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This study aims to investigate thermocapillary-driven convection in two superimposed fluids in zero
gravity. The fluids occupy the space between the walls of a horizontal microchannel which is heated from
below by imposing the top wall to a uniform temperature and the bottom wall to a sinusoidal
temperature that is higher (on the average) than the temperature of the top wall. The goal is to mimic
thermocapillary convection as a result of the variation of the heights of the fluids along the microchannel
and to explore the parameters that affect the fluid flow and interface deformation. This is achieved by
solving the equations of conservation of mass and momentum and the balance of thermal energy and
negligible analytically in both fluids, in the limit of creeping flow regime and negligible convection of
heat. It is shown that the induced flow is characterized by periodic convection cells whose period is the
same as the period of the imposed temperature field and extend from the interface to the walls in the
vertical direction. The flow strength depends on the relative thicknesses of the fluid layers and the ratio
of material properties. The maximum flow strength is achieved at a relative thickness that is set by the
competition between the thermal and hydrodynamic effects. An estimate of the interface deformation is
provided and it is shown that the sense of interface deformation is set by the relative thickness of the

fluid layers and the viscosity ratio.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

When the interface separating two fluids is exposed to
a temperature gradient, the variation of the surface tension at the
interface with the temperature will lead to an interfacial shear force
along the interface that sets the fluids to motion. For most fluids the
surface tension is a decreasing function of the temperature (see, for
example, [1]). Therefore, the fluids typically move from the regions
of higher temperature, where the surface tension is low, to the
colder regions, where the surface tension is high. This phenomenon
is known as thermocapillary (or Marangoni) convection and has
been known for decades. See, for example, [2] and [3].

Thermocapillary forces provide a particularly attractive means
for manipulation of continuous fluid streams or discrete fluid
samples, such as bubbles and drops, in applications involving
microgravity [4] or microdevices [5], where the surface forces
become increasingly dominant as the dimensions of the device are
decreased. These forces, on the other hand, are responsible for heat
transfer failure in some technologically important applications as
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a result of interface instability. One such example is the sponta-
neous film rupture and dry out in micro-evaporators that are used
in numerous industries for thermal management of electronic
devices and MEMS. Here, even if the heated wall is assumed to be
isothermal and flat, slight perturbations in the liquid film thickness
can lead to thermocapillary convection that drives the fluid from
the region of lower film thickness (higher interface temperature) to
the region of higher film thickness (lower interface temperature). In
the absence of stabilizing effect, the instability leads to film
rupture; see, for example, [6—8].

In this study we are interested in exploring the thermocapillary-
driven flow of continuous fluid streams in microchannels and in
zero gravity as a result of the variations of the film thicknesses along
the channel or due to micropatterning of the heated wall. Our goal is
to formulate this problem analytically and to develop a simple
closed form solution. This problem finds applications in boiling and
condensation in microchannels with flat or micropatterned walls.
The patterned structure has been the focus of attention in micro-
devices for variety of reasons, ranging from understanding the effect
of surface irregularities on fluid flow [9], to surface patterning to
produce three-dimensional flows in simple channel shapes [10],
and up to the enhancement of evaporation rate using patterned
walls [11]. In the presence of a temperature gradient, the possibility


mailto:esmaeeli@engr.siu.edu
www.sciencedirect.com/science/journal/12900729
http://www.elsevier.com/locate/ijts

1148 B. Pendse, A. Esmaeeli / International Journal of Thermal Sciences 49 (2010) 1147—1155

Nomenclature

a height of the upper fluid

b height of the lower fluid

l channel length

w = a + b channel height

c specific heat

k thermal conductivity; also wave number k = 27/]
p pressure

Pr = uc/k the Prandtl number

Ma = usa/a the Marangoni number
Re = usalv the Reynolds number

T temperature field

u velocity field

us = (|o7]AT/up)(b/l) velocity scale

Greek Symbols

" dynamic viscosity
P density

a surface tension

hydrodynamic shear stress
curvature
kinematic viscosity
thermal diffusivity; also « = ka
kb
linear temperature field
perturbation temperature field
= Ug/Mp Viscosity ratio
= kq/kp heat conductivity ratio
streamfunction
T ~ (Tp + Tg) — (T, — To) ~ Tp characteristic
temperature difference

DECAT DR Y A A

subscripts

a above
b below
superscripts

a above
b below

of thermocapillary-driven flow is higher in microdevice with
patterned surfaces compared to those with flat surfaces. Rather than
considering variations in the thickness of the fluid layers or varia-
tions in the elevation of the heated wall as a result of micro-
patterning, we consider a horizontal channel with flat surfaces
which is exposed to a uniform temperature at the upper wall and
a sinusoidal temperature along the lower wall. This way the varia-
tion of the temperature along the lower wall can be interpreted as
the variation in the elevation of a micropatterned isothermal heater
or the variation of the fluid film thickness. This simplification helps
present an analytical closed form solution for the problem and leads
to results that will capture the essence of the actual phenomenon.
The heat conduction equation and creeping flow equations are
solved in both fluids and the effect of controlling parameters such as
ratio of the material properties and the film thickness on the
induced convection and interface deformation is studied.

2. Problem setup

Consider two superimposed planar fluids as shown in Fig. 1. The
heights of the lower and upper fluids are b and a, respectively, but
the fluids are of infinite extension in the horizontal direction. The
physical properties of the fluids are their densities, pp, pq, Viscosi-
ties, up, ug, and heat conductivities, kp, k. The surface tension at the
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Fig. 1. The geometric setup depicting two immiscible fluids in a microchannel. The
temperature of the lower and upper plates are T°(x, —b) = T, + T, cos(kx) and
T(x, a) = T, respectively, where T, > Tc > Tp and k = 27/l is a wave number. The gravity
is zero.

interface of the two fluids is ¢. Here, the subscripts/superscripts
b and a denote the parameters associated with the fluids below and
the above of the interface, respectively. The temperature variations
in the present study are considered to be small enough so that the
thermophysical properties of each fluid to remain constant, with
the exception of surface tension. The temperature of the lower and
upper plates are

TP(x, —b) = T}, + Tocos(kx)
and
Ta(X7 a) = TC7

respectively, where T, > Tc > Tp > 0, | is the channel length, and
k = 2w/l is a wave number. The above temperature boundary
conditions establishes a temperature field that is periodic in the
horizontal direction with a period of I. Therefore, it is only sufficient
to focus on the solution in one period; i.e., —1/2 < x < /2.

To find the governing nondimensional numbers, it is imperative
to recognize first the natural velocity and the length scales. This
problem does not have a natural velocity scale. However, a velocity
scale can be constructed based on the fact that the fluid flow is
established as a result of balance of surface tension gradient along
the interface, do/dx, and the viscous shear stress at the interface, 7.
The surface tension gradient scales as (do/dT)(AT/l), where
AT ~ (T + Tg) — (Tp — Tp) ~ To is the characteristic temperature
difference. The viscous shear stress 7, scales as uus/ls, where I is
a length scale associated with the fluids depths and us is the
velocity scale. Here, we have chosen to use the properties of the
lower fluid to nondimensionalize and to account for the influence
of the upper fluid using the ratio of material properties. Setting
loT|(AT[I) ~ wpus/b, results in ug = (|or|AT/up)(b/l), where o1 = da/
dT|p is a characteristic surface tension gradient. Non-
dimensionalization of the controlling parameters leads to the
Reynolds number Re = usb/vp, the Marangoni number Ma = usb/ap,
and the capillary number Ca = upus/op as the primary nondimen-
sional numbers of this problem. Here, ¢ is the surface tension at
areference temperature, » = u/p, and « = k/pc. The ratio of material
properties, p = pa/pp and fi = pg/tiy, k = ka/kp, and ¢ = cq/cp,
and the nondimensional thickness of the lower layer, b = b/I or
b/w, provide a secondary set of nondimensional numbers.
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In this study, we are interested in situations where convective
transport of momentum and energy is negligible, and interface
remains flat. This translatestoRe < < 1, Ma < < l,and Ca < < 1,
respectively. This range of nondimensional numbers can be realized,
for example, by considering a channel of length [ = 100 um and
height w = 50 um, and a temperature gradient of |VT| = 1 K/mm,
which is typical of the experiments. For common fluids, a surface
tension gradient of oy = —107% N/mK, a surface tension of
oo = 0.3 N/m, and a kinematic viscosity of v, = 10> m?/s serve as
typical values. The typical values of ap = 107> m?/s and 1078 m?s,
are for the liquids and gases, respectively. The above characteristic
values result in Re, Ma, and Ca numbers that are typically 0(0.01) or
at most O(1). Since the analysis is for creeping flow regime, the
density ratio does not play a role, and since the flow is at a steady
state, the results are independent of the heat capacity ratio
€ = cq/cp. Therefore, the governing nondimensional numbers of
this flow are the thermal conductivity ratio k, the viscosity ratio f,
and the nondimensional thickness of the lower fluid layer b.

3. Governing equations

The governing equations for this problem are the conservation
of mass and momentum, and the balance of thermal energy at
steady state. These equations are valid for each fluid and are
coupled together through jump conditions at the interface. The
fluids are considered incompressible, immiscible, and Newtonian.
Assuming Re < < 1 and Ma < < 1, it is possible to ignore the
convective transport of momentum and energy. This simplifies
greatly the momentum and the energy equation as these equations
become linear. Assuming further that Ca < < 1, the interface can be
considered to remain flat. The mass conservation, accounting for
incompressibility condition, simplifies to

Vu=0, (1)

the momentum equation yields

—Vp + uviu = 0, (2)

and the balance of energy equation simplifies to

V2T = 0, (3)

where V2 = 9/0x> + 8%/ay>. In addition to the above equations, an
equation of state is needed to relate the surface tension to the
temperature. The dependency of surface tension on temperature is
generally nonlinear, however, for small temperature variation, AT/
Th < < 1, it is possible to consider a linear relation between the
surface tension and the temperature

o(T) = omax + 07(T — Tin), (4)
where

Omax — Omin

or = ,  Tmax = Th + To, and Tmm = T..

Tmax — Tmin

Rather than solving the momentum equation directly, it is more
convenient to work with equation for the streamfunction y; i.e.,

viy =0, (5)
where v* = v¥(v?) is the biharmonic operator.
4. Solution of the energy equation

The energy equation is decoupled from the momentum equa-
tion, but, the momentum equation depends on the energy equation

through the surface tension term in the tangential momentum
jump condition. Since the differential equation is homogeneous
and the temperature is periodic in the x direction, separation of
variables can be used to solve for the temperature, provided the
temperature field T(x, y) is written as

Tixy) = 6(xy) +¢'(); i=ab, (6)
where ¢(y) is a linear temperature field and 0i(x, y) is a perturba-

tion temperature field. Substitution of T' in the energy equation and
the associated boundary conditions result in

v20' = 0. i=ab, (7)
and
2 1
%%:O;i:mh (8)

and the following boundary conditions for § and ¢':

i) The temperature is specified at the lower wall:
0" (x, —b) = Tocos(kx); ¢"(~b) = Ty
ii) The temperature is specified at the upper wall:
0(x,a) = 0; ¢%a) = Tc
iii) The temperature must be continuous at the interface:

0°(x,0) = 0°(x,0); ¢°(0) = ¢°(0)

iv) The heat flux must be continuous at the interface:

b a b a
I<b% = kaﬂ ; kb% = I<a% .
ay y=0 dy y=0 dy y=0 dy y=0
The solution for ¢(y) yields in
b _ ka(TC —Thy + Tckab + Thkba
¢ (y) - akb 4 bka I (9)
and
¢a(y) _ ky(Tc — Tp)y + Tckab + Thkba7 (10)

akp, + bkq

in the lower and upper fluid, respectively. The suggested solution
for 4 is of the form (x, y) = X(x)Y(y). Substitution for # in the energy
equation leads to X" + n’X = 0 and Y’ — nY = 0, where prime
denotes derivation with respect to x or y, and n is a constant to be
determined. The solution of the above ODEs are

X(x) = Acos(nx) + Bsin(nx),
and
Y(y) = Ccos h(ny) + Dsin h(ny),

where A, B, C, and D are constants to be determined from the
boundary conditions. The imposed temperature boundary condi-
tion on the lower plate suggests that the sin term should be
dropped from the expression for X(x) and also n = k. This results in
the following temperature distributions
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0 (x,y) = [All’cos h(ky) + Absin h(ky)] cos(kx), (11)
and
%(x,y) = [Afcos h(ky) + Agsin h(ky)]cos(kx), (12)

in the lower and upper fluid, respectively. Notice thatA’lAé%Aﬁ', and
Af§ are new constants which results from combining of constants
A — D. The solution of the algebraic equations associated with the
above boundary conditions results in

A = AY = Tosin h(a)f (o, B, k),

A§ = —Tocos h(a)f (o, 8,k); AY = —Tokcos h(a)f (a, B,k),

where « = ka, § = kb, and

fla,8,k) = [I}sin h(B)cos h(«) + sin h(«)cos h(ﬁ)] - (13)

Substitution for the constants in equations (11) and (12) results
in the electric potential in the lower fluid

°(x,y) = Tof («, 8, k) [sin h(a)cos h(ky)
—ksin h(ky)cos h(a)] cos(kx), (14)

and the upper fluid

0°(x,y) = Tof (, B, k)sin h(a — ky)cos(kx). (15)

The variation of the interface temperature is a key parameter in
setting the strength and direction of the flow field. As can be seen
from equations (9)—(10) and (14)—(15), the ratio of the thermal
conductivities of the fluids plays a major role in this parameter.
Fig. 2 shows equispaced contours of temperature field for three
different conductivity ratios; k = 0.5, 0.01, and 100; i.e. top,
middle, and bottom frame, respectively. These conductivity ratios
represent, respectively, a liquid/liquid system such as silicon oil and
water, a liquid/gas system such as water/air, and a phase-reversed
system. Here, the thicknesses of the fluid layers are equal. For all the
cases, the direction of heat transfer is predominantly upward,
however, some heat transfer is also taking place from the middle to
the sides. For k = 0.5 (top frame), the slopes of the contour lines for
both fluids at the interface are nearly equal, reflecting the fact that
the thermal conductivities of the fluids are close. For k = 0.01
(middle frame) on the other hand, the slopes of the contour lines at
the interface are remarkably different at both sides. Here, the slopes
of the contour lines approaching from the lower fluid are normal to
the interface, reflecting the fact that heat transfer in the vertical
direction is nearly zero at the interface, because of the very low
thermal conductivity of the upper fluid. For k = 100 (bottom
frame), the temperature is essentially uniform in the upper fluid
and as a result, the temperature gradient nearly vanishes in this
fluid. Therefore, the interface temperature becomes nearly the
same as the temperature of the upper wall. Here, as opposed to
k = 0.01 case, the temperature gradient along the interface is zero.
As a result, the contour lines near the interface conform to its shape.
The heat flux vectors confirm further the above observations.
Judging by the scale of the vectors in the upper and the lower fluids,
it is seen that the heat transfer rate in the upper fluid is nearly zero
for k = 0.01 and it is the highest for k = 100. Fig. 3, which shows
the variation of the perturbed temperature at x = 0 along the
channel height, summarizes the above observations.
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Fig. 2. Temperature contours and heat flux vectors for fluid systems with heat
conductivity ratios of k = 0.5 (top frame), 0.01 (middle frame), and 100 (bottom
frame), respectively. Here, w/l = 0.5 and a/l = b/l = 0.25.

5. Solution of the streamfunction equation

Similar to the solution of the perturbed temperature 6(x, y), the
suggested solution for ¥ is of the form y(x, y) = X(x)Y(y). Before
substitution for ¥(x, y) in the biharmonic equation, however, it is
possible to recognize the functional structure of X(x) from the
balance of hydrodynamic shear stress at the interface:
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Fig. 3. Variation of the perturbation temperature, (0, y)/To, with y/I for the three cases
discussed in Fig. 2.

(szy B T%,) )y:O - g_;{ g_z

where

ou v
Tx_y = u @-‘r& .
Since do/dT = constant and 8T/dx|y—o ~ sin(kx), therefore,

Txy ~ sin(kx), which suggests that ¢ = f{y) sin(kx). To find f{y), ¥ is
substituted in equation (5) which results in

(16)

y=0

f//// _ 2k2f// + k4f - 0.

The suggested solution for the above equation is e™, where m is
a constant to be determined. Here, the characteristic equation for
the above ODE is (m? — k?)> = 0 which results in m = +k. Because of
the double roots, the four independent solutions for f are ¥, ye,
e and ye™. Since the domain is finite in the vertical direction, it
is more appropriate to present the results in terms of hyperbolic
functions. This yields the following expressions for stream func-
tions in the lower fluid

wb = Umax [(Cﬁ’ + C§y> cos h(ky) + (Cé’ + C4by> sin h(ky)] sin(kx)
(17)

and the upper one

Y* = Umax [(C] + C3y)cos h(ky) + (C§ + C4y)sin h(ky)]sin(kx).
(18)

Here, C? and (Y are eight unknown constants to be determined,
where i = 1—4. We have also introduced a new unknown Upax
which is the maximum interface velocity and is determined as part
of the solution. The unknowns are determined using the following
boundary condition:

in h2(a) — a2) (sin h2(8) — 82
h(a,8, ) = (sin h?(a) — a?) (sin h?(8) — %)

i) No-slip, no-through flow boundary condition at the lower

wall:
uP(x,—b) = 0, P(x,—b) = 0.
ii) No-slip, no-through flow boundary condition at the upper
wall:
u(x,a) = 0, v(x,a) = 0.

iii) Continuity of the tangential component of the velocity at the
interface:

uP(x,0) = Umaxsin(kx), u%(x,0) = Umnaxsin(kx).

iv) No-through flow boundary condition at the interface:
P (x,0) =0, 19(x,0) = 0.

v) Balance of shear stress:

u
Kb ay

ou?

L T
y=0 ¢ ay

= 07—
y=0 Tax

y=0"

Notice that in the above equation we have dropped the dv/ox
term from the hydrodynamic shear stress because v = 0 at the
interface according to (iii). The first eight boundary conditions
determines ¢ and @}, i = 1-4, and the last boundary condition
determines Unax, This results in

¢ =ch=o,
o sin h?(a) b sin h2(B)
a —ao b 7bﬂ
G = sin 2 () — o2 T o a2
sin h?(a) — o sin h2(8) — 8
a sin h(2a) — 2 b sin h(26) — 26
G = : G =
2(sin h2 (@) — a2) 2(sin h2(8) — %)
and
(T g (0 .} e, .
Umax - ( /va )g(avﬁ’k)h(aaﬁ7“)a (19)
where
g(a,8,k) = sin h(a)f (a, B, k), (20)
and

fi(sin h2(B) — 62)(sin h(2a) — 2a) + (sin h?(«) — a2)(sin h(26) — 26) '

(21)
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Substitution of these constants in equations (17) and (18) yields
the streamfunction in the lower fluid

\//b
Umax/k —

] . 2 _ l 2
S (8)— 5 {sm h=(8)(ky)cos h(ky) 3 [2{3

— (sin h(26) — 26)(ky)} sin h(ky)}sin(kx), (22)
and the upper fluid

‘//a
Unax/k

i 1
sin h2(a) — az{sm h?(a)(ky)cos h(ky) — 5 [2a2

+ (sinh(2a) — 2a)(ky)] sin h(ky) }sin(kx), (23)

Fig. 4 shows a few equispaced streamline contours along with the
velocity vectors for a case where k = 0.01 and fi = 0.1 with relative
fluid layer thicknesses of a/b = 3, 1, and 1/3. For all the cases, the
fluid flow consists of four counter-rotating vortices that divide the
domain into four parts. The sense of fluid circulation is set by
the temperature gradient at the interface. The interface tempera-
ture, T(x, 0), behaves as cos(kx), and the surface tension gradient,
do/dx, behaves as sin(kx), as predicted by equation (4). This leads to
a shear force at the interface that is from the center to the left
(right) in the left (right) half of the domain. The fluids are set to
motion by this shear force and move from the middle toward the
right and the left. Since the domain is periodic in the horizontal
direction, the velocities of the left-moving and right-moving fluids
decreases as they approach their images in the adjacent periodic
domains. As a result, the fluid is forced to turn upward (downward)
in the upper (lower) half of the domain. The upward and the
downward flow streams, however, slow down as they approach the
walls and turn around near the walls and move parallel to the walls
from the sides toward the middle. The horizontal fluid streams are
forced to turn upward (downward) in the lower (upper) half as they
approach each other from the sides to the center. This results in the
formation of the circulation patterns seen in the figure.

The coordinates of the cores of the vortices, (X yc), can be
determined considering the fact that at the cores both components
of the velocity are zero. X is set by the periodicity of the flow and
can be easily found by inspection of the streamlines where it is seen
that the streamlines are quite horizontal along the lines x/l = +1/4.
The horizontal separation distance between vortices is always 1/2
and, therefore, independent of the flow parameters. y., on the other
hand, depends on the thickness of the fluid layers and can be found
by setting u(x., ¥) to zero. Surprisingly, however, y. is independent
of the viscosities of the fluids. The vertical coordinates of the cores,
measured from the interface, are about a third of the layer thickness
in the middle frame. It moves closer to the interface when the
thickness of the fluid layer is decreased and vice versa. It appears
that the vertical separation distance between the centers of vortices
is about one third of the channel height.

The flow strength is characterized by Unax which is proportional
to g(a, B,k) x h(e, 8, ). For a fluid system with k = 0.01 and
i = 0.1, the variation of g x h with the nondimensional thickness
of the lower layer b = b/w is shown in Fig. 5a. Here, to aid
understanding of the results, b is measured with respect to a coor-
dinate system attached to the lower left corner of the channel and is
nondimensionalized with the separation distance between the
walls, w = a + b. It is seen that g x h starts from zero, reaches
a maximum, and gradually decays to zero. To find out the factors
that determine the thickness where the velocity is maximum, in
Fig. 5b and ¢ we plot g and h as a function of nondimensional
thickness of the lower layer with k and ji as parameters. Fig. 5b
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Fig. 4. Streamline contours and velocity vectors for two fluid systems with relative
thickness of a/b = 3 (top frame), 1 (middle frame), and 1/3 (bottom frame), respec-
tively. Here, k = 0.01, i = 0.1, and w/l = 0.5.

shows that for a given b, g decreases as k increases, and for a given k,
g decreases with an increase in b. The reasons for this behavior are,
respectively, that the temperature gradient along the interface
decreases as the heat conductivity of the upper fluid increases, and
the fact that heat transfer from the heated wall decreases as the
thermal conduction resistance increases with an increase in the
thickness of the lower fluid layer. Fig. 5¢ shows that for a given b, h
decreases as [i increases, and for a given fi, h starts from zero,
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k = 0.01 and i = 0.1. Here, b is measured with respect to a coordinate system
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reaches a maximum, and gradually decays to zero. The figure shows
that h becomes maximum when the more viscous fluid has also the
larger thickness compared to that of the less viscous fluid. This can
be inferred from the shift in the maximum from the left to the right
as it is decreased. It is seen that when both fluids have the same
viscosity, h will be maximum when both layers have the same
thickness. This behavior suggests that the hydrodynamic shear
stresses 1y, immediately across the interface should be uniform so
that Unax, and therefore h, scales as ¢/u, where ¢ is the vertical
distance over which the horizontal velocity drops from Umpax to
zero. This argument can be further backed by considering the shear
stress balance at the interface:

UTATNMaUmax+MbUmaX
l 0 op

Here, 6, and ¢, are the vertical coordinates of the cores of the
vortices in the upper and the lower layers, measured from the
interface, where the horizontal velocity comes to halt. Considering
the fact that 64 ~ a and 6, ~ b, and solving for Unax yields

U - O'TA T/l
P a/a+ pp /b
This equation suggests that for ug > up or pg < up, the denominator
will be minimum when a > b or a < b, respectively. Fig. 6, which
shows the nondimensional horizontal velocity as a function of y/w
at x/l = 1/4 and 3/8, supports the above argument. Here, k = 0.5,
i = 0.5, and a/l = b/l = 0.25. x/l = 1/4 and x/I = 3/8 represent,
respectively, vertical lines that passes through the core of the
vortices and midway between the core and the channel end. The
open circles mark the points with zero and maximum horizontal
velocities. For both cases, it is clearly seen that the horizontal
velocity varies nearly linearly from a maximum at the interface to
zero near the cores of the vortices. In summary, as can be inferred
from Fig. 5, the thickness at which Upax becomes maximum is set
by the thickness for which the product of g and h becomes
maximum. Since g and h depend, respectively, on k and f, this

0.5

0.25¢

yiw
o

-0.25¢

-0.5 i s
-0.4 0 0.4 1

u(x,y)/Umax

Fig. 6. u(x, ¥)/Umax as a function of y/w at 3I/8 and I/4. w is the separation distance
between the walls. Here, k = 0.5, i = 0.5, and a/l = b/l = 0.25.
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means that this thickness is determined by the competition
between the thermal and hydrodynamic effects.

6. Interface deformation

The analysis so far was based on the premise that the interface
remains flat. However, the interface is likely to deform by the
normal stresses. For small deformation, it is possible to calculate
distortion from planar shape using normal stress balance at the
interface:

(T~ ) - (0~ p%)] ’y:O = a(T)k, (24)

where p is the pressure, « is the curvature, and 7y, = 2udv/dy is the
normal stress. The curvature is taken to be positive if the center of
curvature lies on the side of lower fluid, negative otherwise. To
proceed, we need to calculate the pressure. This is done by writing
equation (2) in its components forms in the x and y directions and
integrating the resulting equations with respect to x and y,
respectively. This procedure results in the following expressions for
the pressure in the lower fluid

Pxy) 1 , '
/J«bUmaxk - Sirl hz(ﬂ) - 62 {_ (Sln h(zﬁ) - 25)511‘1 h(ky)
— 2sin h2(5)cos h(ky)] cos(kx), (25)

and the upper fluid

Prxy) 1
BaUmaxk — sin h?(a) — «

— 2sin h?(a)cos h(ky)] cos(kx), (26)

. [(sin h(2a) — 2a)sin h(ky)

respectively. Evaluations of equations (25) and (26) at y = 0 yields
the pressure jump at the interface

p’—p* P sinh?(@)  sinh?(B)
wpUmaxk sin h?(a) — o2 sjn h2(8) —

)cos(kx). (27)

Similarly, evaluation of 7y at y = 0 yields the jump in the normal
stresses at the interface

le)y — Ty
22— 2(ii— 1)cos(kx). 28
UpUmaxk (,u ) (kx) (28)

In principal, it is possible to find the interface elevation along the
channel, yj(x), by considering the variation of ¢(T) with x from
equation (4), approximating « = y"i/(1 + y'#)*/? with « = y”;, and
integration of the resulting expression for y”; ~ flx) with respect to
x. This procedure, however, does not lead to a closed form solution.
To get around this, we assume that the interface elevation behaves
according to y; = ag cos(kx), in line with the variations of the normal
stresses and the pressures with x. Here, ap is the maximum devi-
ation from the planar position. This allows us to find ag by balancing
the coefficients of cos(kx) terms at both sides of equation (24). This
assumption implies that the variation of ¢(T) with x is ignored in
the course of calculation. However, once ag is found, the actual ¢(T)
will be used in the expression for ag. The above procedure yields

2Umax a? ﬁz
% = STk (’uasin 2(a)— a2~ Mgin 28— 62> ' 29

The sense of interface deformation is determined by the sign of
ap which in turn is set by the difference of the terms inside of the
parentheses. Each term represents the product of the viscosity and

a coefficient that is a function of the layer thickness. Since
«a + B = constant, when the nondimensional thickness of the lower
fluid, g, is increased, the coefficient of uj increases while the coef-
ficient of u, decreases. Since y; = ag cos(kx) and 6(x, y) = Ty, + Tp cos
(kx), positive ag implies that the thickness of the lower layer is
positively correlated with the temperature. This is an stabilizing
effect as the higher (lower) film thickness at the place of higher
(lower) wall temperature can reduce the heat flux. For liquid/liquid
systems where g and up are of the same order, the relative thick-
ness of the fluid layers is a determining factor in setting the sign of
ag. For fluids of nearly equal heights, ag is positive if the more
viscous fluid would overlay on top of the less viscous fluids. For
liquid/vapor systems where there is a large difference between the
magnitude of ug and up, the relative thicknesses of the fluids do not
play a major role.

Fig. 7 shows the variation of interface height along the channel
for two different systems. The interface height and the channel
length are nondimensionalized by the channel length, I. Here, the
nondimensional thicknesses of the fluid layers are a/l = b/l = 0.25.
The physical properties for both systems are those of the saturated
liquid/vapor water at atmospheric pressure. For the first system,
the vapor is overlaid on top of the liquid while for the second
system the position of the liquid and the vapor is reversed. Here,
k = 0.0365 and i = 0.0431 for the first system and k = 23.21 and
@ = 27.42 for the second one. The figure shows that the sense of
interface deformation is opposite for the two systems and also the
degree of deformation of the interface for the second system is
about an order of magnitude less than that for the first system. The
difference in the order of magnitudes is due to the reduction in
Umax as a result of the poor heat transfer in the lower layer for the
second system. In the context of micropatterned evaporators, the
variation in the temperature of the lower wall can be interpreted as
the variation in the elevation of an isothermal heated wall. As such,
the sense of variation of the interface elevation for the first system,
where ag < 0, suggests that the interface becomes thinner at the
middle where the film thickness is already minimum. This implies

2x10 ' ' '

—— System 1; p <y,

- - - System 2; u>u,

-0.5 -0.25 0 0.25 0.5
x/1

Fig. 7. Deviation of the interface from the planar shape along the channel for two
different fluid systems. The physical properties correspond to saturate water at
atmospheric pressure. For both cases, the thickness of the liquid layers are equal and
the fluid properties are the same. However, for the first system, the vapor is overlaid on
top of the liquid while the positions of the liquid and vapor are reversed for the second
system.
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that slight perturbations in the film thickness tends to destabilize
the interface. The opposite is true for the second system.

7. Conclusions

Thermocapillary-driven fluid flow in a heated microchannel was
investigated analytically in the limit of creeping flow and negligible
heat convection. The channel was heated from below by imposing
the top wall to a uniform temperature and the bottom wall to
a sinusoidal temperature that was higher (on the average) than that
of the top wall. The flow structure consisted of four counter-
rotating vortices whose sizes in the vertical and horizontal direc-
tions were of the order of the thicknesses of the fluid layers, and
half of the periodic length, respectively. For a given thicknesses of
the fluid layers, the flow strength decreased with an increase in the
thermal conductivity ratio, k = kq/k,, and the viscosity ratio,
QL = ug/mp. For a given system of fluids, the flow strength was
maximum at a relative thickness of the fluid layers, a/b, which was
set by competition between the thermal and the hydrodynamic
effects. For small deformation, the distortion of interface was
examined using normal stress jump condition and assuming that
the interface height is y; = ap cos(kx), where ag is the maximum
deviation from the planar position. It was shown that the relative
thickness of the fluid layers and the viscosity ratio set the sense of

interface deformation. For fluids of equal heights, ag was positive
(negative) if the more viscous fluid would overlay on top of the less
(more) viscous fluids.
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